Nanotechnology Focus Group Meeting
Research Activities

Vipul Bansal
Industrial Chemistry &
Advanced Functional Nanomaterials Group
School of Applied Sciences, RMIT
30th September 2009
Nanotechnology Focus Research Group - Purpose

• Global perspective

Three major challenges that the world is expected to face in the coming years include Climate change, Energy deficiency, and Health issues.

• RMIT’s capabilities in Nanoscience and technology

RMIT has strong expertise in several key nanotechnology areas including –
 – Tailored synthesis of functional materials for various applications (catalysis, sensing, photonics, biomedicine, climate, water, energy, etc)
 – Thin films, nanofabrication and devices
 – Materials modelling and simulation
 – Other fundamental studies associated with nanomaterials

• A potential integrated approach to address these major challenges

In the globally competitive research environment, RMIT can probably create its own space by addressing these issues collectively and focusing on ‘impact-based research’
Advanced Functional Nanomaterials Group – Nanotechnology Research Strengths

Prof. Peter Coloe
A. Prof. Trevor Stevenson
A. Prof. Peter Smooker
A. Prof. Andreas Lopata
A. Prof. Simon Cowell
A. Prof. Moshi Geso
A. Prof. Kourosh Kalantar-zadeh

ORGANO-METALLICS

Peter McCallum Cancer Center
NCCS, India
NCL, India
IICT, India
Southeast University, China
Nanjing University, China

Electrocatalysis – H₂

CO₂

Hg
Shape controlled synthesis of colloidal nanoparticles – Chemical Route

Galvanic Replacement in Water

Galvanic Replacement in Ionic Liquid

Electrochem. Commun. 2009, 11, 1639
Shape controlled synthesis of colloidal nanoparticles – Chemical Route

Ag nano-spheres
Ag nano-cubes
Ag nano-prisms

Silica coated magnetic particles
Shape controlled synthesis of colloidal nanoparticles – Biological & Biomimetic Route

Amino acids-mediated synthesis of silica nanoparticles in ionic liquid

Histidine-silica

Arginine-silica

Lysine-silica
Shape controlled synthesis of colloidal nanoparticles – Biological & Biomimetic Route

Phytase enzyme-mediated synthesis of silica nanoparticles in ionic liquid

- Hollow Silica
- Solid Silica

Phytase enzyme-mediated synthesis of metal nanoparticles in ionic liquid

- Au nanoprisms
- Flat Pt nanostructures
- Hollow Pt spheres
Synthesis of Polypeptide Nanocapsules for Drug-delivery

Nano Lett., 2008, 8, 1741
Adv. Mater. 2009, 21, 1
Shape-controlled synthesis of nanostructures on substrates

Platinum nano-trees

Gold nano-spikes

Gold nano-prisms

1 µm

500 nm

1 µm

500 nm

Langmuir, 2009, 25, 3845
Chem. Commun. 2009, 5039
Applications of Nanomaterials – Polymer Nanocapsules in Drug Delivery

Nano Lett., 2008, 8, 1741
Adv. Mater. 2009, 21, 1
Nanomaterials Applications – Magnetic nanoparticles as contrast agent for MRI

Mouse 1 Mouse 2
Both Mice before contrast

Mouse 1 Mouse 2
No MRI agent MRI Agent
Applications of Nanomaterials –
Shape dependent antimicrobial applications of silver nanoparticles
Nanomaterials Cytotoxicity Studies

- **MTT Assay**
 - 24 h
 - 48 h

- **RNS determination**
 - 24 h
 - 48 h

- **Pro-inflammatory cytokines**
 - ELISA analysis
 - RT-PCR analysis
Applications of Nanomaterials – Electro-catalysis and sensing

Hydrogen evolution
Crystallography dominates

Glucose detection
Surface site activity and crystallography

SERS Sensing of Biomolecules

Hydrazine Oxidation

Ref:
Langmuir, 2009, 25, 3845
Chem. Commun. 2009, 5039
Applications of Nanomaterials – Hg sensing

![Graph showing Hg sensing data](image1)

- **Electro-deposited**
 - N=42
 - Hg Concentration, (mg/m³)
 - Δf (Hz)

- **Non-modified**
 - N=62
 - Hg Concentration, (mg/m³)
 - Δf (Hz)

N = number of point in each data set

School of Applied Sciences
Advanced Functional Nanomaterials Group
RMIT University
mids@t touch

by Galina Kazarina

School of Applied Sciences
Advanced Functional Nanomaterials Group
RMIT University

Research Impact

Learning from nature’s clues

As the first wave of nanotechnology continues to mature, scientists are looking into how nature has solved complex problems. One example is the self-regulating temperature control of the human body. The body responds to sudden changes in temperature by activating its own cooling or heating mechanisms. A new way of creating temperature control is being explored, inspired by nature’s own ability to regulate heat.
Promising Future: Multifunctional Delivery Vehicles

- Quantum Dots
- Magnetic particles
- Hydrophilic anticancer drug with a biodegradable polymer
- Hydrophilic anticancer drug in an oil
Thank You