1. Problem and Objectives
- Exposure to contaminants in the air such as wood dust can cause health problems such as:
 - Dermatitis
 - Allergic respiratory effects
 - Reduction in lung function
 - Nasal cancer
- Socio-economic burden of respiratory diseases accounts for almost six million visits to the GP per year and costs more than A$150 million in direct cost.
- To improve workplace safety through the development of accurate preventative measures such as:
 - Occupational Exposure Limits
 - Ventilation Designs
 - Room Layout and Fresh Air Exchange

2. Integrated Research Strategy
- Experimental Measurements
 - Wood Type/Process
 - Ventilation Designs and Room Layout
 - Particle Dispersions and Airflow Patterns
- Computational Modelling
 - Predictive Model for Innovative Room and Ventilation Designs
 - Evaluation and Recommendations

3. Experimental Measurements
- Measurement of local flow field and particle dispersion using laser technology.
- Field measurements to capture the effects of ventilation systems on the dispersion of harmful dust in the work environment.

4. Computational Modelling
- Human Breathing Patterns
 - Airflow and Deposition in Nasal Cavity
 - Airflow and Deposition in Lungs
 - Exposure Level and Preventative Recommendations
- CAD model creation
- Investigate airflow distribution in a ventilated room
- Determine the inhalation index caused by exposure to dust contaminants.

5. Health Effects
- Chief Investigators
 - Professor Jiyuan Tu (2008 Fulbright Senior Scholar)
 - Dr. Kiao Inthavong (Australian Post-Doctoral Fellow)
- Collaborators and Partner Organisations
 - Purdue University, USA
 - CSIRO
 - D&E Air Conditioning
 - Peninsula Woodturners Guild
 - Airlinx
- Sponsored by
 - Australian Government
 - Australian Research Council

- Computer simulation predicting dust particle deposition in the nasal cavity.
- Inhalation of particles in the respiratory system
- Computer simulation predicting dust particle deposition in the lung airway that causes breathing problems.