Teaching modelling and hydrological concepts

Barry Croke, Felix Andrews, Tony Jakeman and John Norton
The Australian National University
Undergraduate courses

- Data analysis techniques – spectral and time-series analysis (Captain toolbox)
- ODE and PDE based models
- Model development techniques, and analysis of models
 - 10 steps paper
- Uncertainty propagation – and model evaluation in presence of uncertainty
- Models from different disciplines
- Integration of different disciplines
 - Coupled complex models
 - Bayesian network models
Introduction

Development of teaching tools

- Tamborine (written in Java)
 - Introduction to modelling for less mathematical students
 - Hands on “play-with-model” tool
- Hydrosanility (written in R)
 - Tool for exploring data to spot errors, assist with filling missing data
- Rainflowlab (written in R)
 - Future development version of IHACRES
 - Integration of model with Hydrosanility
 - Multiple calibration techniques
 - New model structures – e.g. influence of event magnitude on UH
Model development

- Preference for data-based model development
 - E.g. Captain toolbox
- Need good understanding of the data, and correction of known problems
 - Tools to find problems in datasets, and assist in correcting them
- In absence of suitable data, then resort to processes
 - Constraints on model formulation
 - Use uncertainty analysis to indicate future research
Data analysis

- auto-correlation of rainfall

Correlation coefficient

Normalized response function

Lag
Constraints on model formulation

CMD module drainage equation

\[\frac{\partial U}{\partial P} = 1 - f(M) \]

\[\frac{dM}{dP} = -f(M) \]

- Constraints
 - Analytic solution

\[\frac{\partial U}{\partial P} = 1 \quad \text{when } M = 0 \]

\[\frac{\partial U}{\partial P} \text{ is a monotonically decreasing function of } M \]

\[\int_{M_1}^{0} \frac{dM}{f(M)} = \infty \]
Possible functional forms

- linear
- power law
- bilinear
- trig
- hyperbolic
- tanh
Simulation version of IHACRES

Demonstrates, interactively:
- effect of changing parameter values
- non-uniqueness of calibrated parameter set: “equifinality”.
- tradeoff between fitting different features of the observed data.
- fit statistics vs graphical displays of results.
- the difficulties of manual calibration!
- Start with a catchment dataset and the initial parameter values
 - Investigate goodness of fit
 - Investigate data anomalies
- Play with parameter values
 - Compare models
- Export data and do your own analysis
2. Hydrosanity

- R package with Graphical User Interface
- For managing, plotting and manipulating multiple time series of rainfall and streamflow
- Focus is on understanding the data, and assisting in locating errors in the data
Summary table (click cells to edit)

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Start</th>
<th>End</th>
<th>Length</th>
<th>Timestep</th>
<th>Location X.Y.Z</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>069051</td>
<td>Upper Brogo (Upper Brogo Rd)</td>
<td>1966-06-30</td>
<td>2006-01-02</td>
<td>14 years</td>
<td>days</td>
<td>(149.77, -36.47, 150)</td>
<td>good/sus</td>
</tr>
<tr>
<td>069054</td>
<td>Tumbarra</td>
<td>1946-03-07</td>
<td>2006-01-02</td>
<td>60 years</td>
<td>days</td>
<td>(149.51, -36.30, 970)</td>
<td>good/sus</td>
</tr>
<tr>
<td>069062</td>
<td>Snowball</td>
<td>1896-10-26</td>
<td>2006-01-03</td>
<td>110 years</td>
<td>days</td>
<td>(149.59, -35.94, 870)</td>
<td>good/sus</td>
</tr>
<tr>
<td>069063</td>
<td>Waddilliga</td>
<td>1962-05-16</td>
<td>2006-01-02</td>
<td>44 years</td>
<td>days</td>
<td>(149.54, -36.26, 250)</td>
<td>good/sus</td>
</tr>
<tr>
<td>069075</td>
<td>Yurie</td>
<td>1970-01-01</td>
<td>2006-01-02</td>
<td>36 years</td>
<td>days</td>
<td>(149.73, -36.32, 210)</td>
<td>good/sus</td>
</tr>
<tr>
<td>069111</td>
<td>Quara (Merrydale)</td>
<td>1970-01-01</td>
<td>2006-01-02</td>
<td>36 years</td>
<td>days</td>
<td>(149.88, -36.47, 150)</td>
<td>good/sus</td>
</tr>
<tr>
<td>069112</td>
<td>Yeronga (Cobbyra)</td>
<td>1970-01-01</td>
<td>2006-01-03</td>
<td>36 years</td>
<td>days</td>
<td>(149.82, -36.46, 223)</td>
<td>good/sus</td>
</tr>
<tr>
<td>069131</td>
<td>Dalmeny (Mummuga Way)</td>
<td>1970-01-01</td>
<td>2006-01-02</td>
<td>36 years</td>
<td>days</td>
<td>(150.12, -36.17, 35)</td>
<td>good/sus</td>
</tr>
<tr>
<td>069140</td>
<td>Brogo Dam</td>
<td>1970-01-01</td>
<td>2006-01-02</td>
<td>36 years</td>
<td>days</td>
<td>(149.74, -36.49, 115)</td>
<td>good/sus</td>
</tr>
<tr>
<td>070125</td>
<td>Kybonong (Gannawarra)</td>
<td>1962-05-01</td>
<td>2006-01-02</td>
<td>44 years</td>
<td>days</td>
<td>(149.42, -36.35, 1023)</td>
<td>good/sus</td>
</tr>
<tr>
<td>070199</td>
<td>Numeralla (Badja Composite)</td>
<td>1968-11-30</td>
<td>2006-01-02</td>
<td>10 years</td>
<td>days</td>
<td>(149.51, -36.08, 1040)</td>
<td>good/sus</td>
</tr>
<tr>
<td>070294</td>
<td>Numeralla (Glocca Morra)</td>
<td>1964-04-30</td>
<td>2006-01-02</td>
<td>38 years</td>
<td>days</td>
<td>(149.35, -36.19, 750)</td>
<td>good/sus</td>
</tr>
<tr>
<td></td>
<td>area rainfall (mm/day)</td>
<td>1970-01-01</td>
<td>2006-01-02</td>
<td>36 years</td>
<td>days</td>
<td>NA</td>
<td>NULL</td>
</tr>
<tr>
<td></td>
<td>rainfall grids</td>
<td>1970-01-01</td>
<td>2007-01-01</td>
<td>37 years</td>
<td>months</td>
<td>NA</td>
<td>NULL</td>
</tr>
<tr>
<td></td>
<td>area rainfall weighted</td>
<td>1970-01-01</td>
<td>2006-01-02</td>
<td>36 years</td>
<td>days</td>
<td>NA</td>
<td>NULL</td>
</tr>
<tr>
<td></td>
<td>rainfall at Eurobodale</td>
<td>1970-01-01</td>
<td>2006-01-03</td>
<td>36 years</td>
<td>days</td>
<td>NA</td>
<td>(good/sus)</td>
</tr>
<tr>
<td></td>
<td>runoff coefficient years</td>
<td>1970-01-01</td>
<td>2006-01-02</td>
<td>36 years</td>
<td>days</td>
<td>NA</td>
<td>NULL</td>
</tr>
</tbody>
</table>
$o =$ sufficient data in chosen time frame;
$x =$ too little data available.
qqmath(~data, data = tmp.groups, type = "b", cex = 0.5, groups = which, distribution = qnorm, panel = function(x, ...)::

Click or drag to identify points, Ctrl-drag to zoom, Ctrl-click to zoom out, Right-click for more
Rolling cross-correlation Q vs. P for lags 0,1,-1
3. Rainflowlab (R package)

- Framework for specifying, calibrating and comparing hydrological models.
- Soil Moisture Accounting (SMA) and Routing modules can be specified.
 - e.g. IHACRES CWI and CMD models for SMA
 - Typically transfer function for routing
- Calibration routines for
 - All parameters jointly;
 - SMA parameters, with routing calibration nested inside;
 - SRIV algorithm
 - Separate calibration of routing (independent of SMA, not nested). May use a DBM-like approach, or an iterative inverse scheme.
Summary

- **Model development**
 - Understanding data
 - Data-based versus processed-based formulation
 - Model testing

- **Tools**
 - Teaching behaviour of models
 - Importance of data evaluation
 - Calibration techniques