Applied Sciences

Applied Science

What is applied science?
The way science can change the world is endless. Working in a range of jobs across all industries, scientists explore and discover new things about the world in which we live. In general, science is a way of thinking and problem solving. Applied science is the application of scientific knowledge into a physical environment.

What do applied scientists do?
A career in science could lead to the laboratory or fieldwork; to production or research. Applied science at RMIT offers majors in chemistry, physics, or biological sciences or specialist streams in biotechnology, food science or environmental science. Depending on your electives you may find work in medical science or health, mining and petroleum exploration, forensics, chemical production, plant/soil/animal ecology, food production, gene manipulation, testing for air or water pollution, crop protection or conservation to name a few. Other jobs involve use of advanced instrumentation and analytical equipment, including electron microscopes, life saving medical equipment in intensive care units or atmospheric testing instrumentation.

Employment in science is growing both nationally and internationally.

Where do they work? Who will employ me?
Connected, relevant and focused on making an impact, science at RMIT is all about finding solutions that will change the way we live, travel, learn and work. RMIT's range of science disciplines, combined with work-integrated learning, translate into great job outcomes for science graduates. RMIT applied science graduates work in many areas of science and technology as well as in business.

Science and technology are growth areas with increasing demand for qualified graduates. The Australian Government recognises the need for professionals in science and has provided initiatives to encourage new students to study science.

Applied science at RMIT
The applied sciences degree at RMIT allows you to major in one of four fields: applied sciences, applied chemistry, biological sciences or physics, giving you the flexibility and freedom to shape your own degree. In addition, students can major in environmental science, biotechnology or food science under the general applied sciences program plan.

If you are interested in a range of science areas, the degree provides the opportunity to explore different disciplines before choosing your own major and minor areas of study. Individual academic plans provide guidance and direction for selecting subjects to achieve the major of your choice.

If you are considering a career in applied science, you may be interested in...

- Associate Degree in Applied Science
- Bachelor of Science (Applied Sciences)
- Bachelor of Science (Biotechnology)
- Bachelor of Science (Food Technology and Nutrition)
- Bachelor of Environmental Science
- Bachelor of Science (Dean's Scholar) (Honours)
- Bachelor of Science (Applied Science) and Bachelor of Business (Management) double degree
- Bachelor of Science (Nanotechnology) and Bachelor of Science (Applied Sciences) double degree

Innovative science laboratories with a broad range of equipment allow students to gain hands-on experience.
What you will study

A common first semester gives you a broad introduction to a range of scientific disciplines. This allows you to extend the knowledge you may have gained at secondary school or introduces you to new science disciplines that you may not have studied previously.

To ensure you have a solid background and experience in the fundamental sciences, these courses include biology, chemistry and physics. You select from courses designed for VCE and non-VCE experience, ensuring you are taught at an appropriate level.

With a choice of major study areas, courses are recommended to provide you with the foundation for specialisation in these areas. There is also the opportunity for you to study a second area as a minor.

In second semester of first year you will study courses towards your major. If you change your mind, the degree is flexible enough to allow you to switch majors in second year.

The degree supports work-integrated learning (WIL) in core courses to make sure you experience professional practice in industry before you graduate.

Scientific skills and communication covers the important areas of oral and written communication as well as an introduction to occupational health and safety. These skills and knowledge are fundamental to working in science. In third year you can choose either a research project or a work placement. As part of your degree, you have the opportunity to undertake a Certificate IV in Occupational Health and Safety—with one additional assessment you can pick up an extra qualification.

How it works

<table>
<thead>
<tr>
<th>Year one</th>
<th>Semester 1</th>
<th>Biology</th>
<th>Chemistry</th>
<th>Physics</th>
<th>Scientific skills and communication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mathematics</td>
<td>Major study</td>
<td>Major study</td>
<td></td>
</tr>
<tr>
<td>Year two</td>
<td>Semester 1</td>
<td>Major study</td>
<td>Major study</td>
<td>Major study</td>
<td>Science elective</td>
</tr>
<tr>
<td></td>
<td>Semester 2</td>
<td>Major study</td>
<td>Major study</td>
<td>Elective</td>
<td>Science elective</td>
</tr>
<tr>
<td>Year three</td>
<td>Semester 1</td>
<td>Major study</td>
<td>Major study</td>
<td>Elective</td>
<td>Professional scientist</td>
</tr>
<tr>
<td></td>
<td>Semester 2</td>
<td>Major study</td>
<td>Major study</td>
<td>Science elective</td>
<td>Science project</td>
</tr>
</tbody>
</table>

Student Profile

‘Reading the course outline for applied sciences, I was pleased to see a really broad variety in subjects covering current and interesting topics and was drawn to the flexibility of the degree.

‘The breadth of the coursework at RMIT is impressive and I could easily see how this degree could help to shape a well-rounded career in science, internationally and domestically.

‘An applied science degree is a brilliant base for any science enthusiast who is looking for an encompassing degree with flexibility as well as industry recognition.’

Kate Bygrave
Bachelor of Science (Applied Sciences)